Part Number Hot Search : 
D10SC4M 813LHG MX26LV SI9182DB LM780 1105K 2815S MB166
Product Description
Full Text Search
 

To Download MIC4720YML Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mic4720 3mm x 3mm 2.0mhz 2a integrated s w itch buck regulator mlf and mi c r o l eadfram e are re gistered tradema r ks of amkor tec hnolog y , inc. micrel inc. ? 2180 fortu ne drive ? san jose, ca 95131 ? usa ? tel +1 ( 40 8 ) 944 -08 00 ? fax + 1 (408) 474-1000 ? htt p :/ /www.micrel.com may 2007 m999 9-05 170 7 general description the micrel m i c472 0 is a h i gh efficien cy pwm buck (step- down) re gula t or that provides up to 2a of o u tput cu rre nt. the mic4 72 0 operates at 2.0mhz a nd ha s pro p r ietary internal comp ensation th at allows a clo s ed lo op ban d w idth of over 200k hz. the lo w o n -resi stan ce int e rnal p-ch an nel mosfet of the mic472 0 all o ws efficie n ci es over 92% , redu ce s external comp one nts count an d eliminates the need for an expen sive cu rre nt sen s e resi stor. the mi c47 2 0 op erate s from 2.7v to 5.5v input a nd the output ca n b e adju s ted d o wn to 1v. the devices can operate with a maximum d u ty cy cle of 1 00% for use i n low- drop out co ndi tions. the mic4 72 0 is availabl e in the exposed pad 12-pi n 3mm x 3mm mlf ? and 10 -pin epa d msop packa ge with a junctio n ope rating ran ge from ?40 c to +12 5 c . fe ature s ? 2.7 to 5.5v supply voltage ? 2.0mhz pwm mode ? output c u rrent to 2a ? u p to 94% effic i enc y ? 100% maxim u m duty cycle ? adjusta b le ou tput voltage option do wn to 1v ? u l tra-fas t trans ient response ? ultra - small ex ternal comp o nents stable with a 1h ind u cto r and a 4.7f output cap a cit o r ? fully integrat ed 2a mosf et switch ? micropo we r shutdo wn ? thermal shut down and cu rrent limit prot ection ? pb-fre e 12-pi n 3mm x 3mm mlf ? package ? ?40 c to + 125 c ju nctio n tempe r atu r e range ? pb-fre e 10-pi n epad mso p packag e applicati o ns ? fpga/dsp/asic appli c ati ons ? gene ral p o int of load ? broad ban d communi catio n s ? dvd/ tv re co rde r ? point of sale ? printers /sc anners ? set top boxes ? com puting p e rip herals ? video card s ty pical a pplic ation mic4720 65 70 75 80 85 90 95 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ef fi c i en cy (%) output c urrent (a) mic4720 3. 3v ou t eff i ci enc y v in = 5. 5v v in = 4 . 5v v in = 5. 0v 2 a 2.0mhz bu ck reg u l ato r
mic r el, inc . mic47 2 0 may 2007 2 m999 9-05 170 7 ordering information part nu mb er vo ltag e ju n c tio n t e mp . ran g e pack ag e l ead f i nish mic472 0yml adj. ?40 to + 125 c 12-pin 3 x 3 ml f ? pb-free mic472 0ymme adj. ?40 to + 125 c 10-pin epad msop pb-free pin c onfi gur ation bias en sw vin pgnd sgnd sw vin pgnd pgood 5 1 2 3 4 8 fb nc 67 12 11 10 9 ep 12-pin 3mm x 3mm ml f ? (m l) fb en 6 5 1 sw vin sgnd bias 10 sw vin pgnd pgood 9 8 7 2 3 4 10-pin epad mso p (mm)
micrel, inc. mic4720 may 2007 3 m9999-051707 pin description pin number mlf ? pin number msop pin name pin function 1,12 1, 10 sw switch (output): internal power p-channel mosfet output switch 2,11 2, 9 vin supply voltage (input): supply voltage for the source of the internal p-channel mosfet and driver. requires bypass capacitor to gnd. 3,10 8 pgnd power ground. provides the ground return path for the high-side drive current. 4 3 sgnd signal (analog) ground. provides return path for control circuitry and internal reference. 5 4 bias internal circuit bias supply. must be bypassed with a 0.1f ceramic capacitor to sgnd. 6 5 fb feedback. input to the error amplifier, c onnect to the external resistor divider network to set the output voltage. 7 ? nc no connect. not internally connected to die. this pin can be tied to any other pin if desired. 8 6 en enable (input). logic level low, will s hutdown the device, reducing the current draw to less than 5a. 9 7 pgood power good. open drain output that is pulled to ground when the output voltage is within +/- 7.5% of the set regulation voltage ep ? gnd connect to ground.
micrel, inc. mic4720 may 2007 4 m9999-051707 absolute maximum ratings (1) supply voltage (v in ) .......................................................+6v output switch voltage (v sw ). .........................................+6v output switch current ( sw ).............................................11a logic input voltage (v en ) .................................. ?0.3v to v in storage temperature (t s ) .........................?60c to +150c operating ratings (2) supply voltage (v in ) ..................................... +2.7v to +5.5v logic input voltage (v en ) ....................................... 0v to v in junction temperature (t j ) ........................ ?40c to +125c junction thermal resistance 3mm3mm mlf-12 ( ja ) ...................................60c/w 3mm3mm mlf-12 ( jc )...................................10c/w 10 pin epad msop ( ja )....................................76c/w 10 pin epad msop ( jc )....................................28c/w electrical characteristics (3) v in = v en = 3.6v; l = 1h; c out = 4.7f; t a = 25c, unless noted. bold values indicate ?40c < t j < +125c. parameter condition min typ max units supply voltage range 2.7 5.5 v under-voltage lockout threshold (turn-on) 2.45 2.55 2.65 v uvlo hysteresis 100 mv quiescent current v fb = 0.9 v nom (not switching) 570 900 a shutdown current v en = 0v 2 10 a [adjustable] feedback voltage r 2% (over temperature) i load = 100ma 0.98 1.02 v fb pin input current 1 na current limit v fb = 0.9 v nom 3.5 5 a output voltage line regulation v out > 2v; v in = v out +500mv to 5.5v; i load = 100ma v out < 2v; v in = 2.7v to 5.5v; i load = 100ma 0.07 % output voltage load regulation 20ma < i load < 2a 0.2 % maximum duty cycle v fb d 0.4v 100 % switch on-resistance i sw = 200ma v fb = gnd (high side switch) 95 200 300 m ? oscillator frequency 1.8 2.0 2.2 mhz enable threshold 0.5 0.85 1.3 v enable hysteresis 50 mv enable input current 0.1 2.3 a power good range 7 10 % power good resistance i pgood = 500a 150 250 ? over-temperature shutdown 160 q c over-temperature hysteresis 25 q c notes : 1. exceeding the absolute maximum rating may damage the device. 2. the device is not guaranteed to function outside its operating rating. 3. specification for packaged product only.
mic r el, inc . mic47 2 0 may 2007 5 m999 9-05 170 7 ty pical characteri stics 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rr en t (a ) m i c 472 0 1. 8v out ef f i ci en cy v in = 3. 0v v in = 3. 3v v in = 3. 6v 65 70 75 80 85 90 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rr en t (a ) m i c 472 0 1. 8v out ef f i ci en cy v in = 4. 5v v in = 5. 0v v in = 5. 5v 65 70 75 80 85 90 95 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 2. 5 v out ef f i cie n cy v in = 4. 5v v in = 5. 0v v in = 5. 5v 70 75 80 85 90 95 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 2. 5 v out ef f i cie n cy v in = 3. 3v v in = 3. 6v 65 70 75 80 85 90 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1. 5 v out ef f i cie n cy v in = 3. 0v v in = 3. 3v v in = 3. 6v 65 67 69 71 73 75 77 79 81 83 85 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1. 5 v out ef f i cie n cy v in = 4. 5v v in = 5. 0v v in = 5. 5v 65 70 75 80 85 90 95 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rr en t (a ) m i c 472 0 3. 3 v out ef f i cie n cy v in = 5. 5v v in = 4. 5v v in = 5. 0v 30 35 40 45 50 55 60 65 70 75 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1v out e f f i c i en cy v in = 5. 0v v in = 4. 5v v in = 5. 5v 50 55 60 65 70 75 80 85 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1v out ef f i cie n cy v in = 3. 0v v in = 3. 3v v in = 3. 6v 65 67 69 71 73 75 77 79 81 83 85 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1. 2v out ef f i ci en cy v in =3 .0 v v in =3 .3 v v in =3 .6 v 60 62 64 66 68 70 72 74 76 78 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 effi ci enc y ( % ) outp ut cu rre nt (a ) m i c 472 0 1. 2v out ef f i ci en cy v in = 4. 5v v in = 5. 0v v in = 5. 5v 0.9990 0.9992 0.9994 0.9996 0.9998 1.0000 1.0002 1.0004 1.0006 1.0008 1.0010 2.7 3.2 3.7 4.2 4.7 5.2 supply voltage (v) line r e gulation
mic r el, inc . mic47 2 0 may 2007 6 m999 9-05 170 7 ty pical characteri stics (cont.) 0.990 0.992 0.996 0.998 1.000 1.002 1.004 1.006 1.008 1.010 20 40 60 80 temperature (c) feedback vol t age vs. tempera t ure 0.994 v in = 3.3v 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3 2.4 2.5 20 40 60 80 temperature (c) fr equ e ncy v s . te mperat ure v in = 3.3v 1.9 0 0.2 0.4 0.6 0.8 1.0 1.2 0 1234 5 supply voltage (v) feedback volt age vs . supply v o lt age v en = v in 0 100 200 300 400 500 600 700 800 0123456 supply voltage (v) q u ie sc ent c u rrent vs. supp ly voltage v en = v in 70 75 80 85 90 95 100 105 110 115 120 2.7 3.2 3.7 4.2 4.7 5.2 supply voltage (v) r ds on vs . s u pply v o lt age 0 20 40 60 100 120 140 160 20 40 60 80 temperature (c) r ds o n vs. temper ature v in = 3.3v 80 0 0.2 0.4 0.6 0.8 1.0 1.2 2.7 supply voltage (v) en abl e thresho ld vs. s uppl y vol t age 3.7 3.2 4.2 4.7 0 0.2 0.4 0.6 0.8 1.2 enable thr eshold v s . te mperat ure 20 40 60 80 temperature (c) v in = 3.3v 1.0
mic r el, inc . mic47 2 0 may 2007 7 m999 9-05 170 7 functi onal characteristics continuous current in du c t or c u r r e nt (5 0 0 ma / d iv ) s w it ch v o lt a g e (2v/d i v) t i me (2 00 ns/div ) v in = 3.3v v out = 1v l = 1h c out = 4.7f i out = 1.3a load t ransien t o u t put current (1 a / d i v ) outp ut v o lta g e (20mv/ di v) t i me (10 0 s /d i v ) v in = 3.3v v out = 1.0v output ripple a c coupl ed (10mv/di v ) sw itc h v o l t age (2v/di v ) o u tput cur r ent (2 a / d i v) t i me (200ns /di v ) i out = 2a o u tput v o l t a g e v in = 3.3v v out = 1.0v
mic r el, inc . mic47 2 0 may 2007 8 m999 9-05 170 7 functi onal dia g ra m vin vin bias en sw sw fb pgood pgnd enable and control logic pwm control p-channel current limit sgnd 1.0v 1.0v soft start bias, uvlo, thermal shutdown hsd ea mic472 0 blo ck diag ram
mic r el, inc . mic47 2 0 may 2007 9 m999 9-05 170 7 pin d e s c r i ption vin two pin s for vin provide powe r to the sou r ce of the internal p-ch annel mosf et alon g with the cu rrent limiting se nsi ng. the vi n operating volt age rang e i s from 2.7v to 5.5v. due to the h i gh switchi n g spee ds, a 1 0 f cap a cito r is recom m en ded clo s e to vin and the p o w er grou nd (pg n d) for e a ch p i n for bypassi ng. please re fer to layout reco mmend ation s . bi as the bia s (bias) provide s p o we r to the internal refere n c e and co ntrol se ction s of t he mic472 0. a 10 ? r e si st o r from vin to bias and a 0.1f from b i as to sgnd is requi re d for cl ean op eratio n . en the en able pin provides a l ogic lev e l cont rol of the output. in the off state, suppl y cu rrent of the device is greatly red u ced (typically <1 a). do n o t drive the enable pin above the supply voltag e. fb the feed ba ck pin (fb) provide s the control pat h to c o n t ro l th e ou tp u t. f o r ad ju s t ab le vers io ns , a r e s i s t o r divider con n e c ting the fe e dba ck to th e output is use d to adju s t the de sire d outp u t voltage. the output voltag e is cal c ulate d as follows: ? 1 ?  u 1 r2 r1 v v ref out whe r e v ref is equal to 1.0 v . a feedfor wa rd cap a cito r is r e comm ende d for most desi gn s usi n g the adju s ta bl e output vo ltage option. to redu ce cu rr ent dra w , a 10k feed back re si sto r is recomme nde d from the ou tput to the fb pin (r1). al so, a feedfor w a r d capa citor sho u l d be conn ect ed bet wee n the output and f eedb ack (a cr oss r1 ). th e large r e si stor value a n d th e pa ra sitic capa citan c e o f the fb pin ca n cau s e a hig h frequ ency p o le that can r e du ce the overall system p h a s e ma rgin. by placin g a feedfo r wa rd cap a cit o r, t hese ef f e ct s can be signi f i cant ly redu ced. f e e d f or wa r d c a pa c i ta nc e ( c ff ) can be calcul ate d a s follows : 200khz r1 2 1 c ff u u s sw the switch ( s w) pin co n nect s dir e ctly to the indu ctor and p r ovide s the switchi n g cur r e n t ne ce ssary to op er ate in pwm mod e . due to the high spe e d swit chin g on this pin, the swi t ch nod e sh ould be r o u t ed away fr om s e ns itive no de s . t h is p i n als o c o n n ec ts to th e c a th ode o f the free- wh ee ling diode. pgoo d powe r g ood is a n o p en d r ain pull do wn that i n dicates whe n the out put voltage h a s r e a c he d r egulatio n. fo r a power go od low, the outpu t voltage is within 10% of the set re gulatio n voltage. f o r outp ut voltages gre a te r or less than 1 0 % , the pgood pin i s hig h . this shoul d be c o nnec ted to the input s u pply throu g h a pull u p re si stor. a delay can be added by placing a capa citor fr om pgoo d to gr ound. pgnd powe r gro u n d (pgnd) i s the gro u n d path for the mosfet dri v e cur r ent. t h e cu rr ent lo op for the po wer grou nd sh oul d be a s sm all a s p o ssib le an d sepa r a te from the sig n a l gr ound (s gnd) loop. refer to the layout c o ns iderations for more details . sgnd signal g r ou n d (sg n d) i s t he g r ou nd p a t h for the bia s ing and control cir c uitry. the cur r ent loo p for the si gnal grou nd sho u l d be sep a r a te from th e po we r g r o und (pgnd ) loop. r e fer to the layo ut consi d eration s fo r m o re details .
mic r el, inc . mic47 2 0 may 2007 10 m999 9-05 170 7 applicati on inf o rm ation the mi c47 2 0 is a 2a pwm n on- sy nch r on ou s b u ck r e g u la to r . by sw itc h in g an in pu t vo ltag e s u pp ly, an d filtering the swit che d voltage th rou g h an ind u cto r and cap a cito r, a r egulate d dc voltage i s o b t ained. fi gur e 1 sho w s a sim p lified examp l e of a no n- synchr o no us b u ck conve r ter. figur e 1 . ex a m ple of n on-s y n c h r onous buc k c o n v er ter for a non -sy n ch ron o u s b u ck conve r te r, there are two mode s of o peratio n; co nt inuou s a n d disco n tinu ous. contin uou s or di scontin uou s refe r to the indu ctor cur r e n t. if curre nt is conti nuou sly flowi ng throu gh the indu ctor th r ough out the swit chin g cycle, it is in contin uou s o peratio n. if the indu ctor cur r e n t drop s to zer o du ring t he off time, it is in di sconti nuou s op er ation. critically co ntinuou s is th e point wh er e any decre ase in output current will cause it to enter discontinuous oper ation. th e criti c ally co ntinuou s loa d cur r ent can be cal c ulate d as follows; l 2 2.0mhz v v v i in 2 out out out ? ? ? ? ? ? ? ? ? = contin uou s o r di scontinu o u s o p e r ation determi ne s h o w we calculate pea k indu ctor cur r ent. con t inuous opera t ion figure 2 illustrates the swit ch volt age and inductor cur r e n t durin g contin uou s oper ation. figur e 2 . con t inu ous o p e r a tion the o u tput voltage is reg u lated by pulse width modulatin g ( p wm) the switch voltage to the average requi re d outp u t voltage. the swit ching can be bro k e n up into two cycl e s ; on and off . during th e on-time, the high sid e swi t ch is turn ed on, cur r e n t flows from the in p u t sup p ly thr ough th e ind u ctor and to the out put. the indu ctor cur r ent i s figur e 3 . on- time cha r ge d at the rate; ( ) l v v out in ? to dete r min e the total o n -time, or ti me at whi c h the indu ctor cha r ges, the duty cy cle ne ed s to be cal c ulat ed. the duty cycl e can b e cal c ulated a s ; in out v v d = and the on ti me is; 2.0mhz d t on = ther efore, pe ak to pea k rip p le cu rr ent is; () l 2.0mhz v v v v i in out out in pk pk ? = ? since the averag e pe ak t o pea k cur r e n t is eq ual to the load cu rre nt. the a c tual pea k ( o r hi g hest cu rre nt the inductor will see in a steady state condition) is equal to the output cu r r ent plu s ? the pea k-to -pe a k cur r ent. () l 2.0mhz 2 v v v v i i in out out in out pk ? + = figur e 4 dem onstr ates the off-time. dur i ng the off-time, the high-s i de internal p-c h annel mosfet turns off. since the cu rre nt in the indu ctor ha s to discha rge, the
mic r el, inc . mic47 2 0 may 2007 11 m999 9-05 170 7 cur r e n t flows throug h the free- whe e lin g schottky di ode to the outp u t. in this ca se, the ind u cto r discha rge rat e is (wh e r e v d is the diod e forward voltage ); () l v v d out + ? the total off ti me c an be c a lc ulated as ; 2.0mhz d 1 t off ? = figur e 4 . off- time discon t inuo us oper atio n disco n tinuou s ope ration i s wh en the indu ctor cur r ent discha rge s to zer o duri ng the off cycle. figu r e 5 demon str a tes the switch voltage a nd i ndu ctor cu rr e n ts durin g disco n t inuou s ope ra tion. f i g u re 5. disco n t in uo u s op eratio n w h en th e in d u c t o r c u rr en t ( i l ) ha s com p let e ly discha rge d , the voltage o n the switch node ring s at the freque ncy d e t ermine d by the pa ra sitic cap a cita nce and the indu ctor value. in fig u re 5, it is dra w n a s a dc voltage, but t o see a c tual oper at ion (wit h rin g ing ) ref e r to the function al char acte ri stics. disco n tinuou s mo de of oper ation h a s the advant age over full pwm in that at li ght loads, the mic4720 will ski p pulses as nessa sa ry, r edu cing gat e drive lo sse s , dra s tically im proving lig ht load efficie n cy . efficiency considera t ion s cal c ulating t he efficien cy is as sim p l e as mea s u r ing power out an d dividing it by the power i n ; 100 p p efficiency in out = whe r e inp u t power (p in ) is; in in in i v p = and outp u t po wer (p out ) is cal c ulate d as; out out out i v p = the efficie n cy of the mi c4720 is dete r mined by several f a ct or s. ? rd son (inte r n a l p-ch ann el re sista n ce) ? diod e co ndu ction losse s ? inducto r co n ductio n losse s ? switching losses rd son lo sse s are cau s ed by the cu rre n t flowing thro ugh the hig h side p-ch ann el m o sfet. the amount of p o w er loss ca n be a pproxim ated by; d i r p 2 out dson sw = whe r e d i s th e duty cycle. since the mic472 0 u s e s an internal p-ch a nnel mosfet, rdso n lo sses are i n versel y prop ortion al to sup p ly voltag e. hig her su pply voltage yields a hi g her gate to sou r ce voltage, red u ci n g the rd son, re du cing t h e mosfet co ndu ction lo sses. a gra p h sho w ing typ ical rd son vs i n p u t su pply volt age ca n b e fo und i n the typical cha r a c teri stics se ction of this data s h eet . diod e cond u c tion lo sse s occu r du e to the forward voltage d r op (v f ) and th e outp u t current. dio de p o we r losse s ca n be approxim ate d as follo ws; ( ) d 1 i v p out f d ? = for thi s rea s on, the sch o ttky diode i s the re ctifier of choi ce. using the lowest fo rward voltage drop will hel p redu ce di ode con d u c tion lo sses, an d improve efficie n c y. duty cycle, or the ratio of output voltage to input voltage,
mic r el, inc . mic47 2 0 may 2007 12 m999 9-05 170 7 determi ne s wheth e r the domina n t factor in con d u c tion losses will be the internal mosfet or the schottky diode. high er duty cycle s plac e the p o w er losse s o n the high side swi t ch, and l o we r duty cycl es place the po we r loss es on the sc hottk y diode. inducto r con ductio n lo sse s (p l ) can b e calculated by multiplying th e dc re sista n ce (dcr) times th e squ a r e of the output cu rrent; 2 out l i dcr p = f i g u re 6. s w itch in g t ran sitio n lo sses normally, wh en the switch is on, the vo ltage acro ss the swit ch i s low (virtually ze ro ) and th e cu rrent through t h e swit ch i s hi g h . this eq ua tes to lo w p o we r di ssipat ion. when the swi t ch is off, voltage across the switch i s hi gh and the cu rrent is ze ro, again with p o we r di ssipat ion being lo w. during the tra n s ition s , the voltage acro ss the swit ch (v s-d ) and th e cu rre nt thro ugh th e switch (i s-d ) ar e at middle, causi ng the tr an sition to be the high est instanta neo u s po we r poi nt. durin g continuo us m ode, these lo sse s are the hig hest. also, with high er l oad curre n ts, the s e l o sse s are hig her. fo r di scontinu o u s operation, the tran sition l o sse s o n ly occu r du rin g the ?off? transitio n sin c e the ?o n? t r an sition s there is n o cu rrent flow throu gh the indu ctor. also, be a w are th at the r e are a dditio nal core lo sse s asso ciated with swit chin g curre n t in an indu ctor. si nce most i ndu cto r ma nufa c turers d o n o t g i ve data on the type of material used, approxim ating co re lo sse s becomes very diffic u lt, s o verify inductor temperature rise. switchin g lo sses o c cur twice ea ch cycle, wh en the swit ch turns on and when the switch turns off. this is cau s e d by a non-i deal world where swit chin g tra n siti ons are n o t instan taneou s, and neit her are currents. fig u re 6 demon strates ho w swit chin g lo sse s d ue to the transitio ns di ssipate p o wer in the swit ch.
mic r el, inc . mic47 2 0 may 2007 13 m999 9-05 170 7 component sel ecti on diode selec t ion since the mi c47 20 is non -syn ch ron o u s, a free-whe e ling diode is requi red for prope r o peration. a schottky di ode is re co mmen ded du e to the low fo rwa r d voltage drop and their fa st reverse re covery time. the diode sho u ld be rated to b e able to han dl e the avera ge output current. also, the re verse voltag e rating of the diod e sh oul d excee d the maximum in put voltage. the lo we r the forwa r d volt age d r op o f the diode the better the effic i enc y. please refer to t he layout re commen dation s to minimize switchin g noi se. input ca paci tor a 10f ce ra mic is re com m ende d on each vin pin for bypassin g . x5r o r x7 r diele c trics a r e recomme n ded for the input c a pac i tor. y5v di elect r ics l o se most of their cap a cita nce over tem perature and a r e the r efo r e not recomme nde d. also, tantal um an d el ectrolytic capa cit o rs alone a r e n o t recomme n ded d ue thei r re du ced rms current handli ng, reliability, and esr increases. an additio nal 0.1f i s recommen ded close to the vin and pg nd pi ns for high freque ncy filtering. smaller case size capa cito rs are reco mmend ed d ue to thei r l o we r esr and esl. please refer to layout recom m en dati ons for pro per lay out of the input capa citor. feedb ack resistor s the fee dba ck resi sto r set the outp u t voltage by dividing down the out put and sendi ng it to the fe edba ck pin. t h e feedba ck vol t age is 1.0v . calculating the set o u tput voltage is a s follows; outpu t c a pa citor the mic472 0 is de sig n e d fo r a 4.7f output ca pa citor. x5r or x7 r diele c trics a r e recomme n ded for the o u tput cap a cit o r. y5v dielect r i cs l o se mo st of their capa cita nce over tempe r a t ure and a r e t herefo r e n o t recom m en ded . ? ? ? ? ? ? + = 1 r2 r1 v v fb out whe r e r1 i s t he re sisto r from vo ut to fb and r2 i s the resi sto r fro m fb to g n d. the re com m ende d fee d back resi sto r value s for commo n output voltag es are availa ble in the bill of material s on page 19. although the range of resi st an ce f o r t h e fb r e sist o r s is v e ry wid e , r 1 is recomme nde d to b e 1 0 k. thi s minimizes the effec t the para s itic cap a citan c e of th e fb node. in addition to a 4.7f, a small 0.1f i s recomme n ded clo s e to the load fo r hig h freq uen cy filtering. sma ller ca se si ze ca pacito r s a r e recomme nde d due to there lowe r equival ent seri es es r and esl. the mic4720 utilizes type iii voltag e mode internal comp en satio n an d utili ze s a n int e rnal zero to comp en sate for the dou ble pole roll of f of the l c fi lter. for thi s rea s on, l a rg er out put cap a citors ca n create instabilities. in ca ses where a 4.7f output capacitor is not sufficient, the mic472 0 offers the ab ility to extern ally control the compen satio n , allowing fo r a wide rang e of output ca pa ci tor types and values. feed for w a r d capaci tor (c ff ) a cap a cito r across th e resi stor f r om the outp u t to the feedba ck pin (r1) i s re commen ded f o r mo st d e si gns. this ca pa cito r can give a boo st to ph ase ma rgin and increa se the band width f o r tra n si ent respon se. al so, large value s of feedfo r wa rd capa citan c e can slo w d o wn the turn -on chara c te risti c s, redu cing i n rush cu rrent. for maximum ph ase b o o s t, c ff can be calculated a s follows; inductor sel ection the mic472 0 is d e si gne d for u s e with a 1 h indu ctor. prope r sele ction shoul d e n su re th e ind u ctor can h a ndle the maximum avera ge a n d pea k current s requi red by the load. m a ximum curre n t rati ng s of the in du ctor are gene rally giv en in two me t hods; p e rmi s sible dc cu rrent and satu ratio n current. pe rmissibl e dc cu rrent can be rated eith er f o r a 40 c te mperature rise or a 1 0 % to 20% loss in ind u ctance. en su re the indu ct or sele cted can handl e the m a ximum op erating current. whe n satura tion curre n t is sp ecified, m a ke su re th at there i s e n o ugh margi n that the peak current will not saturate the indu ctor. r1 200khz 2 1 c ff = bias filte r a small 10  resi stor is recom m en ded from the input sup p ly to the bias pi n alo ng with a sm all 0.1f cerami c cap a cito r fro m bias to g r o und. thi s will bypass the high freque ncy no ise gen erate d by the violent swit ching of high cu rrents from re achi ng the inte rn al refere nce and control ci rcuitry. tantalum and ele c trolytic ca pa citors are not recomme nded for the bias, th ese ty pes of ca pa ci tors lose thei r abili ty to filter at high frequ en ci es.
mic r el, inc . mic47 2 0 may 2007 14 m999 9-05 170 7 loop stability and bode analy s is bode analysi s i s an excellent way t o me asure small sign al stabili ty and l oop re sp on se i n po we r su pply desi g n s . bod e an alysis m onitors g a in and pha se o f a control lo op. this i s d one by bre a ki ng t he feed ba ck l oop and i n je cting a sign al in to the fe ed back nod e and comp ari ng th e inje cted sig nal to the o u tput sig nal of the control loop. this will requi re a net work analyzer to sweep th e fre quen cy an d compa r e the i n jecte d si gna l to the outp u t si g nal. the mo st comm on m e thod of inje ction is the u s e of transfo rme r . figure 7 dem onstrates ho w a transfo rme r i s used to inj e ct a sig nal into the feedb ack netwo rk. f i g u re 7. t ran sfo r mer in jectio n a 50 ? re sist or all o ws im peda nce mat c hin g from the netwo rk a nal yzer source. thi s m e tho d allo ws the dc loop to mai n tain re gulat ion and allo w the net work analyzer to i n sert an a c si gnal o n top o f the dc volta ge. the network analyzer will then sweep t he source while monitori ng a and r for a n a/r mea s ure m ent. while t h is is the m o st common meth od for m e a s u r ing the gain and pha se of a powe r sup p ly, it does have sig n ificant limitations. fi rst, to mea s ure lo w fre q uen cy gain and pha se, the transfo rme r ne eds to be hig h in indu ctan ce. this makes freque nci e s <10 0 hz req u i re a n extre m ely large and ex pen sive tran sformer. conv ersely, it must be able to inje ct high freq uen cie s . tran sfo r mers with th ese wide frequ en cy ran g e s g enerally nee d to be cu stom made an d are extremely expen sive (u sually in the tune of several hu ndre d dolla rs!). by using an op -amp, co st and frequ e n cy limitatio ns use d b y an inje ction transfo rme r are co m p letely elimi nated. fig u r e 8 demon strates using a n op -amp in a su mming amplif ier config uratio n for sign al inje ction. n e t w or k a na l y z e r source +8 v r1 1k r3 1k r4 1k 50 f e ed ba c k o u t put ne t w o r k analyzer ?a? input ne t w o r k analyzer ?r? input mi c 9 2 2 b c 5 figur e 8 . op a m p inje c t ion r1 and r2 re duce the dc volt age from the output to the non-i n verting input by h a lf. the net work a nalyzer i s gene rally a 5 0 ? sou r ce. r1 an d r2 also divide the ac sign al sou r ce d by th e n e twork an alyze r by half. th ese two sign als are ?summ e d? to gethe r at half of their origin al input. the outp u t is then g a ine d up by 2 by r3 and r4 (th e 50 ? i s to ba lance the net work a nalyze r?s sou r ce imp e d ance) a nd se nt to the feed back sign al. this essentially b r eaks the l oop and inje cts t he ac sign al on top of the dc output v o lt age a nd sen d s it to the feedba ck. by monitorin g the feedb ack ?r? and out put ?a?, gain and pha se a r e m easure d . thi s method h a s no minimum fre quen cy. en sure that the band width of the op-a m p bei n g use d is m u ch g r eate r th an the expe cted band width of the po we r su pplie s control loop. an op -amp with >10 0 m h z band width i s more tha n sufficient for most power sup p lies (whi ch inclu d e s both line a r and swit chin g) a nd are m o re comm on and si gnifica ntly che ape r tha n the inje ct ion tra n sfo r mers p r evio usly mentione d. the one di sa d v antage to u s ing the op-a m p injectio n method; is the supply voltage s nee d to be low the maximum ope rating vol t age of th e o p -am p . also, the maximum o u tput voltage fo r drivin g 5 0 ? inputs usi ng t h e mic922 i s 3 v . for mea s uring highe r output voltag es, 1m ? inp u t impeda nce is requi red fo r the a and r cha nnel s. rememb er to always m e asu r e th e o u tput voltage with an oscilloscope to ensure the measurement is working properly. you should see a singl e swee p i ng sinu soi dal waveform with out disto r tion on the outp u t. if there is di sto r tion of the si nusoid, red u ce the amplitu de of the so urce sig nal. yo u co uld b e overd r iving t h e feedba ck ca u s ing a la rge signal re sp on se.
mic r el, inc . mic47 2 0 may 2007 15 m999 9-05 170 7 the follo wing bode an alysis show th e small sig nal lo op s t ability of the mic4720, it utiliz es type iii c o mpensation. this i s a do minant lo w freque ncy p o l e , followe d b y 2 zeros an d f i nally the d ouble pole of the in du ctor cap a cito r filter, creatin g a final 20 db/deca de roll off. bode a nalysi s give s us a few impo rt ant data poi nts; spe ed of respon se (g ain bandwi d th o r gbw) and l oop s t ability. loop s p eed or gb w determines the res p onse time to a load tran sient. fa ster re sp onse times yield smalle r volta ge deviation s to load step s. instability in a control loo p occurs when there is gai n and positive fe ed back. ph ase margi n i s the mea s u r e of how stable the giv en system i s . it is mea s u r e d by dete r min i ng how fa r the p hase is from cro s sing ze ro whe n the g a i n is equal to 1 (0 d b ). typically for 3.3vin and 1. 8vout at 2a; ? phase margi n =47 degr ee s ? gbw=156 khz gain will al so increase with input voltage. the foll owing grap h sho w s the in cre a se in gb w fo r an incre a se in sup p ly voltage. 5vin, 1.8vout at 2a load; ? phase margi n =43. 1 degr ees ? g b w = 21 8kh z being that the mic4 72 0 is non -sy n ch ron o u s ; the regul ator onl y has the ability to source current. this mean s that t he regul ator has to rely o n the l oad to be able to sin k curre n t. this cau s e s a no n-line a r resp onse at light load s. the follo win g plot shows the effects of the pole cre a ted by the non linear ity of the output d r ive durin g light lo ad (di s contin uou s) conditi ons. 3.3vin, 1.8vout iout=50ma ; ? phase margi n =90. 5 degr ees ? gbw = 64.4kh z feed for w a r d capa citor the feed ba ck resi sto r s are a gain red u ction blo ck i n th e overall syste m re sp on se of the regul a t or. by pla c in g a cap a cito r fro m the outpu t to the feedba ck pin, h i gh freque ncy si g nal can byp a ss the resi sto r divider, ca u s ing a gain in cre a s e up to unity gain. -1 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 gain ( d b) fr eq uency ( h z) gain an d phas e vs. fre q u e ncy 0 5 10 15 20 25 phas e boost ( ) 10 0 1 k 10 k 100 k 1m l= 1 h c ou t = 4.7 f r1 = 1 0 k r 2 = 12 .4k c ff = 82 pf gain p h ase the g r ap h a bove sho w s the effects o n the gai n a n d pha se of th e system ca use d by feed ba ck resi sto r s an d a feedforwa rd cap a cito r. th e maximum amount of p hase boo st achie v able with a f eedfo r wa rd capa cito r is grap hed b e lo w.
mic r el, inc . mic47 2 0 may 2007 16 m999 9-05 170 7 0 5 10 15 20 25 30 35 40 45 50 12345 pa hs e bo o s t ( ) ou tput vol t a g e ( v ) m ax. amount of p h ase boost obtaina b le using c ff v s . output vo l t ag e v ref = 1v as you can see th e typical p h a s e m a rgin, u s in g the same re si sto r value s a s before with o u t a feedfo r ward cap a cito r re sults in 33.6 d egre e s of p h a se ma rgin. our prio r mea s u r ement with a feedforward cap a cito r yielded a pha se m a rgin of 47 degre e s. the feedfo r ward cap a cito r ha s given us a pha se boo st of 13.4 degree s (47 de gree s- 33.6 de gre e s = 13.4 de gre e s). by looking at the grap h, ph as e ma rgin can be affecte d to a greate r de g r ee with hi gh er output voltage s. the next bo d e plot sh ows the p h a s e margi n of a 1.8v output at 2a without a fe e d forward ca p a citor.
mic r el, inc . mic47 2 0 may 2007 17 m999 9-05 170 7 out put im pe da nc e and tra n sient response output imp e dan ce, si mpl y st ated, is the amo unt of output voltag e deviation v s . the load current deviati on. the lower the output imped ance, the better. out out out i v z ? ? = output impe dan ce for a buck regulat or is the p a rallel impeda nce of the output ca pacito r an d th e mosfet a nd indu ctor divid ed by the gai n; cout l dson total x gain x dcr r z + + = to mea s u r e output impe d ance vs. freq uen cy, the load curre n t must be load curre n t must be swept a c ro ss the freque nci e s measured, while the o u tput voltage is monitored. figure 9 sho w s a test set-up to measu r e output impe dan ce fro m 10hz to 1mhz u s ing the mic519 0 hig h spe ed controller. f i g u re 9. o u t p u t imp e d a n c e measu r e me n t by setting up a net work a nalyze r to sweep the f eed bac k curre n t, whil e monito ring the outp u t of the voltag e regul ator a n d the voltag e acro ss th e load resi sta n ce, output impe dan ce is e a s ily obtaina b l e. to kee p the curre n t from being to o hi gh, a dc offset n eed s to b e applie d to the netwo rk anal yzer? s sou r ce sign al. this can be done with an external supply and 50  resi st o r . mak e sure that the currents are ve rified with an oscilloscope first, to en su re the inte grity of the signal measurement . it is al way s a goo d id ea to mo nitor the a an d r measurement s with a sco pe while you are sweepin g it. to co nvert the network analyzer dat a from dbm to somethi ng m o re u s eful (such as pea k to pea k voltage and current in our ca se ); 707 . 0 2 50  1mw 10 v 10 dbm = ? and pe ak to p eak cur r e n t; load 10 dbm r 707 . 0 2 50  1mw 10 i = ? the followi n g grap h sh ows output impedan ce vs freque ncy at 2a load cur r ent swe epin g the ac cur r ent from 10 hz to 10mhz, at 1a peak to pe ak amplitude. 0 . 001 0. 0 1 0. 1 1 o u t p ut i m p e danc e ( o hms) f r eq uenc y (hz) outp ut imp e da nc e vs. fr eq uen c y 100 1k 10 k 100 k 1m v out =1.8 v l=1 h c out =4 .7 f + 0 . 1 5v in 3.3 v in 10 from this g r aph, you can see the effects of ban dwidth and o u tput capa citan c e. for fr equ en ci es <20 0 khz, the output impe dan ce i s d o minated by the gain an d indu ctan ce. for fr equ en cie s >200k hz, the ou tput impeda nce is domin ated by the cap a citan c e. a good appr oximatio n for tra n si en t re spo n se can b e cal c ul ated from dete r mi ning the f r eq uen cy of the l oad step in a m ps per second; 2 a/sec = f then, d e term ine the o u tpu t impedan ce by looki ng at the output imp e d ance vs f r eq uen cy gr aph. then calculating the voltage d e viation times the load step ; out out out z i v ? = ? the output i m peda nce g r aph sho w s the r e lation ship betwe en sup p ly voltage and out put im peda nce. thi s is cau s e d by th e lo we r rd son of the hig h si de mos f et and the i n cre a se i n gai n with incr ea sed sup p ly voltag es. this expl ain s why high er supply volta ges h a ve be tter transi ent re sp onse. cout l dson total x gain x dcr r z + + =
mic r el, inc . mic47 2 0 may 2007 18 m999 9-05 170 7 ripp le measu r emen ts to pr ope rly measur e rip p l e on eithe r in put or o u tput of a swit chin g re g u lator, a p r op er rin g in tip measur ement is requi red. standard oscilloscope probe s com e with a grou ndin g cli p , or a long wire with a n alligator cl ip. unfortu nately , for hi gh f r eque ncy m e asu r em ents, this grou nd clip ca n pi ck-u p high fre q uen cy noi se and erroneously inject it into the measur ed o u tput ripple. the sta nda rd evaluation b oard acco m m odate s a h o me made ver s io n by providing pro be po ints for both the input an d out put su pplie s and thei r r e spective g r o u n d s. this requi res the removing of the oscilloscope probe sheath and ground clip fr om a standard oscilloscope prob e an d wr appin g a n o n - shi e lde d bu s wir e ar oun d the oscilloscope probe. if there does not happe n to be any non shiel ded bus wi re im mediately av ailable, the l ead s from axial resi stors will work. by maintaining the shortest possible ground lengths on the oscilloscope prob e, true ri pple mea s u r e m ents can be obtained.
mic r el, inc . mic47 2 0 may 2007 19 m999 9-05 170 7 re comm ende d la y out: 2a evaluation board re c o mme nded to p la y out re c o mme nded bottom la y out
mic r el, inc . mic47 2 0 may 2007 20 m999 9-05 170 7 mic4720 schemati c and bom for 2a out put i t e m p a r t nu mb e r desc rip t io n man u f actu rer q t y c1a,c1 b c 2 0 1 2jb0j 1 0 6 k g r m219r 60j 106ke 19 080 56d 106ma t 10f cer a mic capac itor x5r 080 5 6.3v 10f cer a mic capac itor x5r 080 5 6.3v 10f cer a mic capac itor x5r 080 5 6.3v td k murata avx 2 c2 040 2z d10 4 ma t 0.1f ceramic capacit or x5r 0402 1 0 v avx 1 c 3 c 2 0 1 2jb0j 4 7 5 k g r m188r 60j 475ke 19 060 36d 475ma t 4.7f ceramic capacit or x5r 0603 6.3 v 4.7f ceramic capacit or x5r 0603 6.3 v 4.7f ceramic capacit or x5r 0603 6.3 v td k murata avx 1 c4 vj040 2a82 0k xaa 82pf cer a mic capac itor 04 02 visha y vt 1 d1 ssa33l 3a schottk y 3 0 v sma visha y sem i 1 rlf 7 0 30-1 r 0 n 6r4 1h ind u ctor 8 . 8m ? 7.1mm(l ) x 6.8mm (w )x 3.2mm(h) t d k 1 744 7 78 9 001 1h ind u ctor 1 2 m ? 7.3mm(l) x7.3mm(w ) x3. 2 mm(h) w u rth elektron ik 1 l1 ihlp25 25ah- 0 1 1 1h ind u ctor 1 7 .5m ? 6.47m m(l)x6.86mm( w ) x1.8mm(h) visha y d ale 1 r 1 , r 4 c r c w 04 021 0 0 2 f 10k ? 1 % 04 02 resistor visha y d ale 1 r2 crcw 04 026 6 51f crcw 04 021 2 42f crcw 04 022 0 02f crcw 04 024 0 22f 6.65k ? 1 % 04 02 f o r 2.5v out 12.4k ? 1 % 04 02 f o r 1.8 v out 20k ? 1% 040 2 f o r 1.5 v out 40.2k ? 1 % 04 02 f o r 1.2 v out o pen f o r 1.0 v out visha y d ale visha y d ale visha y d ale visha y d ale visha y d ale 1 r 3 c r c w 04 021 0 r 0 f 10 ? 1 % 04 02 r e sistor visha y d ale 1 u1 mic472 0bml 2.0mhz 2a buck reg ulator micrel, inc. 1 notes : 1. tdk: www.tdk.com 2. murata: www.mu rata.com 3. avx: www.avx.c o m 4. vishay : www.visha y .com 5. wurth elektronik: www. w e -online.com 6. micrel, inc: www .micr e l.com
mic r el, inc . mic47 2 0 may 2007 21 m999 9-05 170 7 package inform ation 12-pin 3mm x 3mm ml f ? (m l) micrel, inc. 2180 fortune drive san jose, ca 9513 1 usa t e l + 1 (408) 9 44-0 800 f a x + 1 (408) 47 4-1 000 w eb http:/ w w w . m i crel.co m the infor m ation fur n ished b y micrel in this data sh eet is belie ved to be accur a te and r e liable. ho w e ver , no r e sponsibility is a ssumed by micr el for its use. micrel reserves the right to change circuitry a n d specificati ons at an y time w i tho u t notification to the customer. micrel products are not designed or autho r iz ed for use as components in life support ap pliances, devi c es or sy stems where malfu nction of a product r e a s o n a b l y b e expected to res u lt in personal inj u ry . life su ppor t devices or sy stems ar e devices or s y stems that ( a ) ar e in tende d f o r s u r g i c a l i m p l a into the bod y or (b) support o r sustain life, and w h o s e failure to perf orm can be re asonabl y e x pected to result in a significan t injury to th e user. a purchaser?s use or sale of micrel produc ts for use in life support app liances, devices or s y stems is a purchaser?s ow n risk and purchaser agre e s to full y indemnif y micrel for an y damages resulting from such use or sale. c a n n t ? 2006 micrel, in corporated.


▲Up To Search▲   

 
Price & Availability of MIC4720YML

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X